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Abstract. We present a simple, heuristic justification for the diagonal approximation in the
periodic orbit theory of long-range spectral statistics for chaotic systems without time reversal
symmetry. For ergodic systems, this extends the validity of the approximation beyond the
log(1/h̄) time, where it is supported by more elementary arguments, to times of the order of the
Heisenberg timeTH = 2πh̄d̄. This is in agreement with eigenvalue correlations in the Gaussian
unitary ensemble of random matrix theory. For diffusive systems, the same argument suggests
that the diagonal approximation breaks down on a time scale consistent with that expected on
the basis of the scaling theory of localization.

Random matrix theory (RMT) models the universal behaviour of quantum systems that are
chaotic in the classical limit [1–4]. Consider, for example, the form factor

K(T ) = 1

d̄

∫ ∞
−∞

R(ε) e−iεT /h̄ dε (1)

where

R(ε) = 〈d(E + 1
2ε)d(E − 1

2ε)〉E− 〈d(E)〉2E (2)

is the two-point correlation function of the density of statesd(E), 〈. . .〉E is an average
over an energy range aroundE that is large compared to the mean level spacing and small
compared toE itself, and the mean densitȳd = 〈d(E)〉E is of the order of ¯h−f in a system
with f degrees of freedom. It has been found thatK(T ) is well approximated by RMT
in most regimes of timeT ; that is, it isuniversal, being determined solely by symmetries.
Specifically, systems with no time reversal symmetry are modelled by the Gaussian unitary
ensemble (GUE), for which

K(T ) =
{
T/TH for 0< T 6 TH

1 for T > TH
(3)

where the Heisenberg timeTH = 2πh̄d̄ is conjugate to the mean level separation.
Deviations from (3) are appreciable in ranges of sizeTc aroundT = 0 andT = TH,

whereTc is the characteristic time scale for the decay of correlations in the corresponding
classical system (related to the smallest non-vanishing eigenvalue of the Frobenius–Perron
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operator) [5–7].Tc is analogous to the Thouless time in disordered systems and is purely
classical; thus in the semiclassical limitTc/TH → 0 and Tc/TE → 0, whereTE is the
Ehrenfest time, which is of the order log(1/h̄) for chaotic systems.

A semiclassical approximation to the density of states is given by the Gutzwiller trace
formula [2, 8]

d(E) = d̄ + Re
1

πh̄

∑
p

Ap e(i/h̄)Sp (4)

where the sum is over periodic orbits with actionSp (defined here to include the Maslov
index) and amplitude

Ap = Tp

| det(Mp − I )|1/2
Tp being the period andMp the monodromy matrix. Substituting this into (1) and (2) then
gives [5]

K(T ) = 1

TH

〈∑
p,p′

ApAp′ e
(i/h̄)(Sp−Sp′ )δ

(
T − Tp + Tp′

2

) 〉
E

. (5)

This sum over orbit pairs is unfortunately intractable to analytic calculations for typical
systems. The standard approach is to make the diagonal approximation, which for non-
time-reversal-symmetric systems takes the form

K(T ) ≈ K(diag)(T ) = 1

TH

∑
p

A2
p δ(T − Tp). (6)

(Here the energy average has been assumed implicitly, and the symbol〈. . .〉E omitted.)
One justification is that as ¯h → 0 the phase of the exponential in (5) oscillates rapidly
and consequently averages to zero unlessSp = Sp′ . This is clearly valid if otherwise
|Sp − Sp′ | > h̄. However, because of the exponential proliferation of periodic orbits in
chaotic systems, this condition can only hold for timesT that are less thanTE; that is, for
times that areO(log(1/h̄)). Even so, when the sum in (6) is evaluated using the Hannay–
Ozorio de Almeida sum rule [9], one finds

K(diag)(T ) = T

TH
(7)

whenT > Tc, which coincides with the GUE expression (3) up to the Heisenberg timeTH,
which is of the order of ¯h1−f . It is, therefore, natural to ask why the approximation works
so far outside its obvious range of validity. Our purpose here is to present one possible
explanation. In addition, we will also show that our argument leads to predictions for the
time scale on which the diagonal approximation (equivalent to diagrammatic perturbation
theory [10]) breaks down in diffusive systems that are in agreement with the scaling theory
of localization.

Our approach makes explicit use of the conjectured universality of the quantum spectral
statistics in classically chaotic systems of spinless particles without time reversal (or any
other anti-unitary) symmetry in the following way. We consider a two-dimensional billiard
with no geometrical symmetry threaded by Aharonov–Bohm flux lines [11], and average
over the fluxes. It will be assumed that the form factor, being universal, is invariant
under this operation. We will then show that this implies the exactness of the diagonal
approximation in the rangeTc < T < T ∗, whereT ∗ is of the same order asTH. (The range
0 6 T 6 Tc is already covered by the argument given after (6), becauseTc/TE → 0 as
h̄→ 0.)
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Before we start, it is worth noting explicitly that flux lines are central to our approach;
we cannot use a smooth magnetic field. The motion of a charged particle is different in the
two cases in several important respects. First, the classical motion is not disturbed at all
by the flux lines, whereas it is in a smooth magnetic field. Second, quantum wavefunctions
are diffracted by the flux lines and, by virtue of the boundary conditions, vanish on each
of them; hence their morphology is completely different from that encountered in a smooth
magnetic field. Third, all physical quantities are periodic in each flux, and so any analogy
with a real magnetic field can only hold when the fluxes are much smaller than one fluxon.
In the present work we make essential use of this periodicity.

Let the billiard be threaded byN + 1 flux lines with fluxesφj (in units of one fluxon),
wherej = 0, 1, 2, . . . , N . The action of the periodic orbitp then satisfies

Sp

h̄
= S0

p

h̄
+ 2π

N∑
j=0

φjωj,p (8)

where S0
p is the action of thepth orbit in the absence of the flux lines, andωj,p is its

winding number with respect to the position of thej th flux line. Hence the semiclassical
approximation to the form factor (5) can be written

K(T ;φ0,8) = 1

TH

∑
p,p′

ApAp′ exp

[
i

h̄
(S0
p − S0

p′)+ i2π
N∑
j=0

φj (ωj,p − ωj,p′)
]

×δ
(
T − Tp + Tp′

2

)
(9)

where8 denotes the set of fluxesφj with j = 1, 2, . . . , N . If φ0 is sufficiently large, the
system belongs to the class described by general Hamiltonians where time reversal symmetry
is broken [12], independently of the values ofφ0 andφj for j 6= 0 (the restrictions on this
statement will be discussed below). Averaging over allφj with j > 0 will thus not affect
K(T ) in the universal regime, and so

K(T ) = 〈K(T ;φ0,8)〉8
= 1

TH

∑
p,p′

ApAp′ exp

[
i

h̄
(S0
p − S0

p′)+ i2πφ0(ω0,p − ω0,p′)

]

×
N∏
j=1

δωj,p,ωj,p′ δ

(
T − Tp + Tp′

2

)
(10)

whereδi,j is the Kroneckerδ-symbol.
At this stage we divide the periodic orbits into two classes, corresponding to those

that are self-retracing and those that are not. For orbits that are self-retracing, all winding
numbers vanish. The fraction of these compared to the set of all orbits of periodT is of
the order of e−htT/2, whereht is the topological entropy. Therefore, their contribution to
the form factor can be ignored in the universal regime where we shall work.

Of the orbits that are not self-retracing, many pairs(p, p′) will not contribute to (10)
because they have different winding numbers. Moreover, assuming for the moment that
there is no restriction on the number of flux lines (such a restriction will, however, be
discussed below), the periodic orbits of a given period can be uniquely determined by their
winding numbers. To see this, take two different periodic orbits,p1 andp2, with the same
winding numbers around the flux lines already in place. A new flux linej12 can always be
introduced in the space between the two orbits about which they will have different winding
numbersωj12,p1 6= ωj12,p2. Hence, if the density of flux lines is unbounded, all non-diagonal
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contributions to the form factor can be removed, for any given fixedT , by the averaging
procedure described above; that is, the diagonal approximation can be shown to be exact
for all T .

We are now in the position of having proved too much, because the diagonal
approximation is in fact only exact up toT = TH. The question is, therefore, what
determines the breakdown of the flux line argument? To answer this, it is helpful to place the
flux lines at the vertices of a lattice with spacinga. Knowledge of all the winding numbers
determines the orbits with resolutiona. The key point is that the approach described above
can only be applied whena is large compared to the de Broglie wavelengthλ. There are
three ways to see this. First, the semiclassical trace formula (4) is only valid whenλ� a,
otherwise non-classical diffractive orbits must be included. (The only length scale in the
scattering of plane waves by a single flux line isλ, and the amplitude of the diffracted
waves decreases as

√
λ/r, wherer is the distance from the flux line.) Second, the quantum

wavefunctions can only resolve the flux lines if their separation is large compared toλ.
Third, because the wavefunctions must vanish on the flux lines, they typically cannot extend
over the billiard if λ > a. (This is analogous to the situation for channels, where if the
wavelength is smaller than the width the wave is evanescent.) Thus asa is varied there is
a sharp transition in their morphology atλ = a.

The fact that one must haveλ � a sets a restriction on the ability of the flux lattice
to resolve periodic orbits. The corresponding limit of resolution in the time regime may be
estimated as follows. The probability density for an ergodic orbit of lengthl not to pass
through a given lattice cellS of sizea × a is proportional to e−l/ l

∗
, where the mean free

path is l∗ = A/a, andA is the area of the billiard. (Usually the mean free path is 1/nσ

wheren is the density of scatterers andσ is their cross section; in the present case there is
one scatterer, the regionS, son = 1/A, and in two dimensionsσ is the linear size ofS,
thereforeσ ≈ a.) The probability density for an orbit of periodT not to pass throughS is
therefore proportional to e−T/T

∗
, where, takinga of the order of (but much larger than)λ,

T ∗ = η1
Am
λp
= ηTH. (11)

Hereη andη1 = 2πη are (undetermined) constants,m is the mass of the particle andp is
its momentum.

An orbit that does not pass through the cellS differs by at least one winding number
from an orbit that does. Because of the exponential nature of the probability density, nearly
all of the orbits with periodT < T ∗ are uniquely determined by their winding numbers and
there the diagonal approximation holds. Conversely, almost all orbits with periodT > T ∗

cannot be resolved in this way and then the diagonal approximation can no longer be
justified. It is striking thatT ∗ is of exactly the same order as the timeTH on which the
approximation is known to break down.

Our argument is equivalent to the following suggestive procedure. Take a typical
trajectory of lengthvT , wherev is the velocity andT is the evolution time. Now give
the trajectory a width of a de Broglie wavelengthλ. The above discussion implies that the
diagonal approximation is justified for times up to the order ofT ∗, when the area swept
out is equal to the total area of the billiard; that is,T ∗ is the solution of(h/mv)vT ∗ = A.
This generalizes immediately to billiards of arbitrary dimensionf . ThenT ∗ is the solution
of (h/mv)f−1vT ∗ = V, whereV is the total volume. This clearly gives

T ∗ = V(2E)(f/2)−1mf/2/hf−1

which is again of the same order as the Heisenberg time. In a similar way, the argument
also extends trivially to smooth scalar potentials.
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It seems reasonable to assume that there is no time scale betweenT ∗ andTH, and that
thereforeη is of order unity, but we cannot find its value from the present arguments. The
most that we can conclude semiclassically is that in the regionTc� T � T ∗ = O(TH),

TH
dK(T )

dT
= 1 (12)

for non-time-reversal-symmetric ergodic systems. This extends the range of validity beyond
the log(1/h̄) time that previously set the limit. ForT < Tc the form factor is not universal
and the assumptions underlying the flux-line argument do not hold. However, the first
argument, given in the paragraph after (6) does then apply, becauseTc/TE→ 0 ash̄→ 0,
and so again the diagonal terms should be sufficient to give a result that is semiclassically
exact.

Our approach can also be extended to diffusive systems. Consider first the case of a
quasi-one-dimensional billiard, in which the motion is diffusive in one dimension. Again
the flux-line method provides a justification of the diagonal approximation up to a time of
the order ofT ∗, when the area swept out by an orbit given a widthλ, hT ∗/m, is equal
to the total area explored. This second area is proportional to the mean distance travelled
in the direction of diffusion, namely

√
DT ∗ whereD is the diffusion constant, and to the

billiard width w. HenceT ∗ ∼ m2w2D/h2. More generally, for diffusion inf dimensions(
h

mv

)f−1

T ∗v ∼ Vf (T ∗) (13)

whereVf (T ) is the volume explored by a typical orbit after a timeT . If we take forVf the
corresponding volume for a random walk [13], then, for example,T ∗ ∼ exp(α2/h̄) when
f = 2, andT ∗ ∼ |αf h̄f−1−c|−2/(f−2) for 2< f < 4, wherec is a constant andαf depends
on m, v, D and the volume scale in system. The diagonal approximation is expected to
work for T < T ∗, in which range one has the classical result [10]

K(diag) ≈ P(T ) T
TH

for Tc < T < T ∗ (14)

whereP(T ) is the probability density for a typical orbit to return to its starting point after
a timeT . For T > T ∗ quantum interference becomes important. It is interesting to note
that T ∗ is of exactly the same order as the break time derived from the scaling theory of
localization. The flux line argument thus provides a semiclassical basis for Allen’s estimate
for the parametric dependence of the localization length [14]. In addition, if we assume
that the time scaleT ∗ translates under Fourier transform in the variable 1/h̄ into a length
scale for action correlations [15], then we also have a justification for the corresponding
assumptions made in [16].

It is worth noting that in diffusive systems RMT is only applicable if the localization
length exceeds the size of the systemL, that is whenT ∗ is larger than the Thouless time
L2/D, and that our arguments are being applied in the non-universal regime before RMT is
valid [17]. The justification relies on there still being an ensemble of systems with different
fluxes all having the same classical limit, and on the assumption that the form factor depends
only on the classical dynamics. The fact that in ergodic systems the diagonal approximation
applies in the non-universal regime whenT < Tc provides further support [5–7].

The simple arguments we have presented support the correctness of the diagonal
approximation for systems without time reversal invariance that are modelled by the GUE
in the universal semiclassical regime, where RMT holds. This results from a pure quantum
symmetry: the existence of a continuous family of quantum systems with the same classical
limit. The possibility to vary the phases of the contributions of the various periodic orbits
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without any effect on the classical dynamics leads to the conclusion that the off-diagonal
contribution averages to zero for times less thanT ∗, which is of the order of the Heisenberg
time TH. Unfortunately, our argument does not extend directly to time-reversal-symmetric
systems. To do so would require the construction of families of systems with Gaussian
orthogonal ensemble (GOE) statistics for which off-diagonal terms in the periodic orbits
sums could be eliminated by averaging over one or more parameters. It is striking that for
such systems the diagonal approximation is not exact, but that it does hold approximately
on time scales of the order ofTH (in the sense that it predicts the correct universal slope
of the form factor asT/TH → 0). It would be interesting, therefore, to pursue this line
of reasoning further. With this point in mind, we again draw attention to the fact that our
flux-line argument does not resolve contributions from self-retracing orbits, or trajectories
in their neighbourhood, which probably play a central role in the semiclassical theory of
time-reversal-symmetric systems [18].

Also with this in mind, we return to make a final comment about (10). In the flux-line
construction we left one flux (labelledj = 0) fixed and large, to ensure that we stayed
within the GUE. However, this is not strictly necessary, because the GOE–GUE transition
is semiclassically sharp; specifically, in a billiard with a single fluxφ, the level statistics
are, on the scale of the mean level spacing, GOE whenφ = 0 and GUE whenφ2µTH � 1,
whereµTH is the mean-square winding number of orbits whose period isTH [12]. (For the
form factor to take the GUE form throughout the regimeTc < T < T ∗ similarly requires
φ2µTc � 1.) Thus if the form factor is averaged overall of the fluxes, the result is
semiclassically close to the GUE expression. This has interesting implications. Consider a
billiard in which the dynamics is time reversal symmetric. The level statistics will then be
GOE and one may expect this to be seen in the semiclassical periodic orbit sum (5). Now
introduce a set of flux lines, as above, and average over all of them. The result is a similar
orbit sum, but contains only those pairs that have the same winding numbers about all of
the positions where the flux lines were—this corresponds to (10) without the contribution
from the j = 0 flux. Note that no fluxes appear in the final expression. This implies
that if one sums over all pairs of orbits in (5) one will get the GOE form factor, but if
one sums only over those pairs that have the same winding numbers about some arbitrarily
chosen set of points, one will be left with the GUE form factor, at least forT < T ∗. Thus
the semiclassical difference between the GOE and the GUE is in orbits that have different
winding numbers about one or more such points. One such pairing is between an orbit and
its time reverse, leading to the derivative ofK(T ) at T = 0 being twice the GUE value,
but the fact that theK(T ) is not exactly linear implies that there are more. It possible that
this may be a clue as to the semiclassical origins of weak localization corrections. The
fact that periodic orbits in the vicinity of self-retracing trajectories are an exceptional set
with respect to the flux-line argument again hints at their involvement in these corrections
[18].
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